

2023 Winter-Online Bridge Program College Mathematics Syllabus

Basic Information

1

Term	2023 Winter semester		
Course Title	College Mathematics	MAS100	
Professor	Andreas Holmsen		
Department	Department of mathematical sciences		
Language	English		
Students	Online Bridge Program / College Mathematics Applicants		
Learning Period	2024.1.2 ~ 2024.3.11 (10 weeks in total)		
Reviewing Period	2024.3.12 ~ 2024.3.22 (1 week in total)		
Final Exam Date	2024.3.23		

2 Course Details

	This course offers a thorough introduction to Calculus. Topics such as Limits,
	Differ- entiation, and Integration will be dealt with through formal definitions
	such as precise definition of limits, continuity, derivatives, and integrals as
Course	limits of Riemann sums. We also include formal proofs of important results
Description	such as the Limit Laws and Differenti- ation Rules. Integration techniques such
Description	as substitution and integration by parts will be covered in detail together with
	applications such as volume and surface area of solids of revolution, and arc
	length of parametrized curves. Polar coordinates will also be treated.
	length of parametrized curves. Foral cool diffates will also be treated.

٦

Textbook/ References	Thomas' Calculus. Early Transcendentals. (13th edition), (by George B. Thomas, Maurice D. Weir, and Joel R. Hass) International Edition, publisher: Pearson					
Evaluation	Attendance	Quiz	Assignment	Discussion/ Others	Final Exam	Total
	0%	0%	50%	0%	50%	100%

3 Weekly Schedule

Г

Week	Subject / Content	
Week 1	Functions and their graphs	
	(Chapter 1)	
Week 2	Limits	
	(Chapter 2)	
	+ Assignment 1	
Week 3	Derivatives and differentiation rules	
	(Chapter 3)	
Week 4	Chain rule and implicit differentiation	
	(Chapter 3)	
	+ Assignment 2	
Week 5	Extreme values and the mean value theorem	
	(Chapter 4)	
Week 6	L'hopitals rule, applied optimization, and Newton's method	
	(Chapter 4)	
	+ Assignment 3	
Week 7	The definite integral and the fundamental theorem of calculus	
	(Chapter 5)	

	Integration by substitution and integration by parts	
Week 8	(Chapter 5 and Chapter 8)	
	+ Assignment 4	
Week 9	Volume, arc length, and surface area	
	(Chapter 6)	
Week 10	Parametric curves and calculus in Polar coordinates	
	(Chapter 11)	
	+ Assignment 5	
Week 11	Reviewing Period	

